

Architecture and Specifications

of IUDX 2.0

Table of Contents

1 Terms and Definitions 6
1.1 API 6
1.2 Endpoint 6
1.3 API Server 6
1.4 Vert.x 6
1.5 API Server 6
1.6 Client certificate 6
1.7 Event Bus 7
1.8 Service 7

2 Solution Architecture: Catalogue and Resource Server 8
2.1 API Server Architecture 8

2.1.1 Service Discovery 9
2.1.2 Service Proxy 9
2.1.3 Circuit Breaker 9
2.1.4 Metrics and Logs 9
2.1.5 Configuration Retriever 9
2.1.6 Request Decoding and Response Module 10
2.1.7 API Definition Module 10
2.1.8 Service Mesh Architecture 10

2.2 Catalogue Server Solution Architecture 11
2.2.1 Catalogue Server Components 11

2.2.1.1 API Server 11
2.2.1.2 Request Decoding and Response Module 11
2.2.1.3 Database Search Service 11

Attribute Search 12
Geo-Spatial Search 12
Text Search 12
Complex Search 12
Response Filter 12

2.2.1.4 Database Item Creation Service 12
2.2.1.5 Database Item Update Service 12
2.2.1.6 Database Item Delete Service 12
2.2.1.7 Item validation Service 13
2.2.1.8 Owner validation Service 13
2.2.1.9 Onboard Service 13

2.3 Resource Server Solution Architecture 13
2.3.1 Resource Server Components 14

2.3.1.1 API Server 14
2.3.1.2 Request Decoding and Response Module 14
2.3.1.3 Database Search Service 14

2.3.2 Data Broker Service 15
2.3.2.1 Create Exchange 15
2.3.2.2 Delete Exchange 15
2.3.2.3 Create Queue 15
2.3.2.4 Delete Queue 15
2.3.2.5 Create Bindings 15
2.3.2.6 Update Bindings 15
2.3.2.7 Delete Bindings 15

2.3.3 Authentication Service 15
2.3.4 Database Connector 15
2.3.5 Provider Onboard Service 16

2.4 Multi-tenancy 16
2.5 Fault tolerance 16
2.6 Load Balancing 16
2.7 References 16

3 Authorization Service Specifications and Architecture 17
3.1 Authorization server solution architecture 17

3.1.1 API Server 17
3.1.2 Policy Engine 17
3.1.3 Database 18
3.1.4 Packet Filter 18
3.1.5 Backup Service 18
3.1.6 Notifications and Alerts 18

3.2 Authorization Service API Specifications 18
3.2.1 Access Control 20

3.2.1.1 Create a policy for a provider 20
3.2.1.2 Append to an access control policy for a provider 21
3.2.1.3 Revert to previous policy 22
3.2.1.4 List all policies of a provider. 22

3.2.2 Access Tokens 23
3.2.2.1 Get an access token 23

3.2.3 Managing tokens 24
3.2.3.1 Revoke a valid token 24
3.2.3.2 Revoke all valid tokens of a consumer 25
3.2.3.3 Introspect a token 26

3.2.3.4 Audit tokens 27
3.2.4 Managing Groups 28

3.2.4.1 Add consumer to a group 28
3.2.4.2 Delete consumer from a group 29
3.2.4.3 List consumers in a group. 29

3.2.5 Miscellaneous 30
3.2.5.1 Get certificate information 30

3.3 References 31

4 Resource Server and Catalogue API Specifications 32

Scope

IUDX 2.0 architecture and specification have been finalized and are documented herein.

There are three sections in the document that cover the various aspects of the system.

1. Solution Architecture (Catalogue and Resource Server)
2. IUDX Authorization Server (API Specifications and Solution Architecture)
3. Resource Server and Catalogue API Documentation

Disclaimer
This document is not meant to be released publicly.

1 Terms and Definitions

1.1 API
Application Programming Interface (API) is an interface with which external applications interact
with the IUDX system through predefined interfaces designed based on an industry-standard
such as HTTP / HTTPs to ensure interoperability.

1.2 Endpoint
An endpoint specifies how a resource can be accessed. It allows an end-user or application to
interact with the IUDX API Server based on a predefined protocol and format, expressed in
JSON or JSON-LD.

1.3 API Server
An API server implements the endpoint, methods, services which are publicly exposed and work
as per the definition in the specification.

1.4 Vert.x
As defined in [1], Eclipse Vert.x is a set of tools for building reactive applications on the JVM. It
is event-driven and non-blocking which means a server built using it can handle a lot of
concurrencies using a small number of kernel threads. Vert.x lets the application scale with
minimal hardware.

1.5 API Server
The API server is a faithful implementation of the API specification.

1.6 Client certificate
A client certificate is a certificate used to authenticate clients during an SSL handshake. It
authenticates users who access a server by exchanging the client authentication certificate.

A SSL handshake usually involves a server certificate, where the server authenticates itself to
the client. However, some APIs can also request for a client certificate during the SSL
handshake in order to verify that the client is who they claim to be.

1.7 Event Bus
As defined in [2], A Vert.x event-bus is a light-weight distributed messaging system which allows
different parts of your application, or different applications and services to communicate with
each in a loosely coupled way. An event-bus supports publish-subscribe messaging,
point-to-point messaging and request-response messaging.

1.8 Service
As defined in [3], A service is a discoverable functionality. It can be qualified by its type,
metadata, and location. A service can be a database, a service proxy, an HTTP endpoint and
any other resource you can imagine as soon as you can describe it, discover it and interact with
it which is described by a Record. Under the hood, messages are sent on the event bus to
invoke the service and get the response back. But for ease of use, it generates a proxy called a
service proxy that we can invoke directly (using the API from the service interface).

2 Solution Architecture: Catalogue and Resource
Server

This section describes the reference architecture for the data exchange API Server, interfaces
of API server, components in this ecosystem. It also describes the Solution Architecture for the
Catalogue and Resource Server where the responsibilities of various components and their
interactions with other interfaces are explained.

2.1 API Server Architecture
IUDX API server will be implemented using Eclipse Vert.X framework. The generic API server
architecture diagram is shown below. The same architecture is used for API components of both
the Catalogue and Resource server. For a detailed description of Vert.X components and tools
refer to the Vert.x documentation [4]. In this section, the components used in the IUDX API
Server are briefly described.

Figure 1 : API Server Reference Architecture

2.1.1 Service Discovery
A Service Discovery provides an infrastructure to publish and discover various services using
the service proxy. In the API server, we have database service, data broker service, request
decoding service, onboard service etc. Using the service discovery interface, each service can
be exposed to the consumer using a service record. A service record contains the name,
endpoint, status of the service. A service provider will update the record and the consumer will
use the record to understand the ways to connect to the provider.

2.1.2 Service Proxy
A Service Proxy will allow us to isolate a functionality (a service) somewhere and make it
available to be used from the rest of the application. For example, we can expose a database
service on the event bus, and the API Server can consume it, as soon as it knows the address
on which the database service is published.

2.1.3 Circuit Breaker
A circuit breaker can handle faults that might take a variable amount of time to recover when
connecting to a remote service. For example, if the database is down, any call to the API Server
to search for data in the database will have an issue. When we do not have a circuit breaker, all
the calls from the API Server will be routed to the database service which will fail due to a
timeout since the database is down. When we have a circuit breaker in place, the API server will
know the state of the database service before routing the call and any issues related to the
service can be handled by the API server itself. This can improve the stability and resiliency of
an application. It will also allow API server to operate with few services even when one or few of
the microservices are down. This limits the downtime of the Server and handles server faults
effectively.

2.1.4 Metrics and Logs
A Metrics service allows monitoring of various components of the server when running in
production. Vert.x Metrics Service Provider Interface (SPI) allows reporting metrics to open
source components such as Dropwizard, Micrometer from components like HttpServer,
NetServer etc. Since we are using the HttpServer for developing the API server, we can use the
SPI for understanding the runtime metrics of the server.

2.1.5 Configuration Retriever
A Vert.x Configuration Retriever provides multiple ways to configure the server.

● For syntaxes, it provides options such as JSON, properties, Yaml (extension), Hocon
(extension).

○ We use properties as a way to configure the services

○ Information such as endpoint, username, password etc will be served through the
properties file

● For stores, it provides options such as files, directories, HTTP, git (extension), Redis
(extension), system properties and environment properties.

○ We use HTTP to download the properties file to be used to set up the service.

2.1.6 Request Decoding and Response Module
The query decoding module implements the API decoding, service discovery, interacts with the
event bus to execute the service, responds to the application after executing the request.

2.1.7 API Definition Module
The API definition module implements the endpoints as defined in the IUDX specification and
also allows an end-user or application to interact with the API Server based on a predefined
protocol and format.

2.1.8 Service Mesh Architecture
As a design choice on the architecture, keeping scalability for microservices in mind we chose
the Service Mesh Architecture. In a service mesh architecture, each microservice is a
well-defined module that can be containerized and discovered using service discovery. The
orchestration of the services can be such that data-intensive modules are residing closer to the
database which also helps in better response times, limits the bandwidth and reduces the cost.
Also, it helps in scaling of a specific microservice at ease.
Other advantages include :

● Faster delivery​: Smaller modules, frequent releases with less risk
● Isolation​: Single service cannot crash the entire system
● Scaling​: We can scale individual services based on the use
● Culture​: Well defined ownership

2.2 Catalogue Server Solution Architecture

Figure 2 : Catalogue Server Solution Architecture

A minimalistic setup of a catalogue server will consist of 5 docker containers in 2 nodes. Having
a setup like this will allow specific high load containers to scale in ease.

2.2.1 Catalogue Server Components

2.2.1.1 API Server
An API server is a server-side web API implementation of the endpoint, methods, services
which are publicly exposed and works as per the definition of the request-response messaging
system. The APIs of the catalogue server are implemented as per the specification of IUDX.

2.2.1.2 Request Decoding and Response Module
The query decoding module implements the API decoding, service discovery, interacts with the
event bus to execute the service, responds to the application after executing the request.

2.2.1.3 Database Search Service
A search service interacts with the Database, searches for documents and serves the request
as per the API Definition.

Attribute Search

An attribute search is a module of search service that interacts with the Database, searches for
documents using attribute queries and serves the request as per the API Definition.

Geo-Spatial Search

A geospatial search is a module of search service that interacts with the Database, searches for
documents using geospatial queries and serves the request as per the API Definition.

Text Search

A text search is a module of search service that interacts with the Database, searches for
documents using text queries and serves the request as per the API Definition.

Complex Search

A complex search is a module of search service that interacts with the Database, searches for
documents using attribute and geospatial queries or text and geospatial queries and serves the
request as per the API Definition.

Response Filter

A response filter is a module of search service that interacts with the Database, searches for
documents using any of the above queries and serves the request as per the API Definition.

2.2.1.4 Database Item Creation Service
The items in a catalogue can be classified into the following item types

● Resource
● ResourceGroup
● ResourceServer
● Provider

Based on the itemType to be created, the database item creation service validates the provider
using a certificate, validates the item based on the item type structure and connects with the
database to create an item of itemType.

2.2.1.5 Database Item Update Service
Based on the itemType to be deleted, the database item update service validates the provider
using a certificate, validates the item based on the item type structure and connects with the
database to update an item of itemType.

2.2.1.6 Database Item Delete Service
Based on the itemType to be deleted, the database item deletion service validates the provider
using a certificate, validates the provider and provider rules of the item based on the certificate
and connects with the database to delete an item of itemType.

2.2.1.7 Item validation Service
An item validation service validates the item of an itemType for conformance to a specific
document type. The catalogue does not accept in-valid documents and it is assured through this
service.

2.2.1.8 Owner validation Service
An owner validation service verifies an onboarding user using their certificate or token. During
an item update or deletion, this service plays a major role in access control.

2.2.1.9 Onboard Service
An onboard service helps in setting up the data publication pipeline by interacting with the IUDX
Resource Server to create or delete exchanges, queues and bindings based on the operation in
the catalogue.

2.3 Resource Server Solution Architecture

Figure 3 : Resource Server Solution Architecture

A minimalistic setup of a resource server will consist of 8 docker containers in 4 nodes. Having a
setup like this will allow specific high load containers to scale in ease.

2.3.1 Resource Server Components

2.3.1.1 API Server
An API server is a server-side web API implementation of the endpoint, methods, services
which are publicly exposed and works as per the definition of the request-response messaging
system. The APIs, wherever applicable, of the resource server, is implemented as per the
specification of NGSI-LD [5]. In scenarios where there is a requirement of new APIs, IUDX will
recommend those which will be then adopted as NGSI-LD APIs.

2.3.1.2 Request Decoding and Response Module
The query decoding module implements the API decoding, service discovery, interacts with the
event bus to execute the service, responds to the application after executing the request.

2.3.1.3 Database Search Service
A search service interacts with the Database, searches for documents and serves the request
as per the API Definition.

Attribute Search
An attribute search is a module of search service that interacts with the Database, searches for
documents using attribute queries and serves the request as per the API Definition.

Geo-Spatial Search
A geospatial search is a module of search service that interacts with the Database, searches for
documents using geospatial queries and serves the request as per the API Definition.

Text Search
A text search is a module of search service that interacts with the Database, searches for
documents using text queries and serves the request as per the API Definition.

Complex Search
A complex search is a module of search service that interacts with the Database, searches for
documents using attribute and geospatial queries or text and geospatial queries and serves the
request as per the API Definition.

Response Filter
A response filter is a module of search service that interacts with the Database, searches for
documents using any of the above queries and serves the request as per the API Definition.

2.3.2 Data Broker Service
The Data Broker Service interacts with the data broker to create, update, delete exchanges,
queues and bindings.

2.3.2.1 Create Exchange
A create exchange is a module of data broker service which enables the creation of exchange
to which adaptors, sensor-gateway or sensors can publish data.

2.3.2.2 Delete Exchange
A delete exchange is a module of data broker service which enables deletion of an exchange.

2.3.2.3 Create Queue
A create queue is a module of data broker service which enables the creation of queues to
which data published by adaptors, sensor-gateway or sensors can reside for the subscription.

2.3.2.4 Delete Queue
A delete queue is a module of data broker service which enables deletion of a queue.

2.3.2.5 Create Bindings
A create binding is a module of data broker service which enables binding between a sender
(exchange) and a receiver (queue) based on a topic or ID.

2.3.2.6 Update Bindings
An update binding is a module of data broker service which updates an existing binding
between a sender (exchange) and a receiver (queue) based on a topic or ID.

2.3.2.7 Delete Bindings
A delete binding is a module of data broker service which deletes or unbinds a topic or ID in the
consumer [a receiver (queue)] from a sender (exchange).

2.3.3 Authentication Service
An authentication service connects with the IUDX Authentication server to validate a token
using the Token Introspection Point (TIP). It also has a cache layer, taking token validity into
consideration to avoid frequent calls to the Authentication Server.

2.3.4 Database Connector
The database connector interacts with the data broker to fetch data pushed by sensors/adaptors
from the respective queues and writes it into the database collection as per the tenant policy.

2.3.5 Provider Onboard Service
A provider onboard service will help in setting up the policies on the pipeline for data ingestion.
For eg. when an adaptor needs to publish data into the resource server, certain policies need to
be enforced to allow a publication to exchanges.

2.4 Multi-tenancy
In HTTPs with every API request, by default, an instance ID is passed as a Host header field.
Every document in the catalogue and every database collection or a data broker virtual host in
the resource server has an instance ID field associated with it. With instance ID as the tenant
ID, multi-tenancy is achieved.

2.5 Fault tolerance
Circuit Breaker can prevent an application from repeatedly trying to execute an operation that's
likely to fail. Allowing it to continue without waiting for the fault to be fixed will incur unnecessary
resource utilisation in the server. Circuit Breaker will enable a faulty service to be tracked,
temporarily disables the service from accepting new tasks and allows faults in the service to be
fixed. Once the fault has been resolved it will open the closed circuit and enable application
modules to connect with the service which was temporarily down / faulty. More information on
this can be found at [6].

2.6 Load Balancing
In a service mesh architecture, each service can be scaled as required and the reason why we
chose to containerize each service was to take this design advantage. Though the design of the
system plays a key role, it is the overlying docker layer which keeps the load of the system
under control with predefined policies as per the system principles.

2.7 References
[1] Vert.x available at ​https://vertx.io/
[2] Vert.x Event Bus available at
https://vertx.io/preview/docs/kdoc/vertx/io.vertx.core.eventbus/-event-bus/
[3] Vert.x Service Discovery available at ​https://vertx.io/docs/vertx-service-discovery/java/
[4] Vert.x Documentation available at ​https://vertx.io/docs/
[5] NGSI-LD APIs available at
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf
(Need to update to latest specification)
[6] Circuit Breaker Pattern available at
https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

https://vertx.io/
https://vertx.io/preview/docs/kdoc/vertx/io.vertx.core.eventbus/-event-bus/
https://vertx.io/docs/vertx-service-discovery/java/
https://vertx.io/docs/
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf
https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

3 Authorization Service Specifications and
Architecture

3.1 Authorization server solution architecture

The Authentication, Authorization and Accounting (Auth-Server) system is built upon the
OpenBSD operating system. The various components are described below.

3.1.1 API Server
The API server serves all the Auth related APIs. It is currently written in NodeJS. The server
spawns a single master process and several worker processes to handle requests. The server
makes use of OpenBSD security mechanisms to reduce the damage an attack can cause.

3.1.2 Policy Engine
The policy engine is used to evaluate requests based on policies set by the provider. It is based
on node-aperture [0], which allows for policies to be written in a near plain-text syntax. A
provider will set policies for their resources based on their requirements and conditions. Policies
are evaluated when a client makes requests for certain resources owned by a provider.

3.1.3 Database
The database stores all token-related and policy-related information. A single instance of
PostgreSQL has been used. Token-related information includes token hashes (only the has of
the token is stored), resources related to the token and identity information of consumers.
Policy-related information includes the policies set by various providers as well as groups of
consumers that are managed by providers.

3.1.4 Packet Filter
A packet filter is used to perform rate-limiting on incoming connections and serves as a
preliminary protection from spammed requests and denial of service attacks. The pf [1] tool
provided by OpenBSD is used for this. If a client is making too many requests per second, the
IP address of that client will be blocked for some period of time.

3.1.5 Backup Service
A backup of the database is taken daily and is pushed to Tarsnap [2]. Tarsnap allows for
differential backups to be taken, i.e. only new data will be stored.

3.1.6 Notifications and Alerts
Telegram [3] is used as a notification channel to inform the admin of crashes or errors in
functioning of the system. Telegram was chosen as it was easy to integrate with the system.

3.2 Authorization Service API Specifications

The Auth APIs expect the ​METHOD​ to be ​POST​. Inputs/outputs if any, are expected to be in
JSON​ format. The APIs return:

● 200​ on success
● 400​ on bad request
● 403​ on unauthorized request

And on exceptions APIs return:

● 402​ on payment required (due to insufficient credits)
● 429​ on too many requests
● 500​ on internal error

IUDX Authorization server APIs can be called by:

● Data providers (the resource owners)
● Data consumers (client/users who wish to access one or more data provider's data)
● Resource servers (which hosts the data provider's data)

through HTTPS using a valid client-side X.509 certificate.

The complete list of APIs is as follows:

Endpoint Description Can be called by

1 /auth/v1/acl/set Set access control policies Data provider

2 /auth/v1/acl/revert
Revert to previous access control
policy Data provider

3 /auth/v1/acl/append
Append to existing access control
policies Data provider

4 /auth/v1/acl
Get the current list of access control
policies Data provider

5 /auth/v1/token Request for an access token Data consumer

6 /auth/v1/token/introspect Verify a token Resource server

7 /auth/v1/token/revoke Revoke a list of tokens Both data providers and consumers

8 /auth/v1/token/revoke-all
Revoke all tokens associated with a
certificate Both data providers and consumers

9 /auth/v1/audit/tokens Audit tokens Both data providers and consumers

10 /auth/v1/group/add Add a consumer to a group Data provider

11 /auth/v1/group/delete Delete a consumer from a group Data provider

12 /auth/v1/group/list List all valid members of a group Data provider

13 /auth/v1/certificate-info Get user's certificate details Anyone

Certain APIs can be accessed only by a certain “class” of certificate. The IUDX Certificate
Authority [4] currently issues 3 classes of certificates:

● Class-1​ : For resource servers (can only introspect tokens)
● Class-2​ : For consumers (can only request for tokens)
● Class-3​ : For providers, data officers, and consumers

The Auth server accepts certificates issued by the IUDX CA. It also accepts certificates issued
by licensed CAs in India [5], and other trusted CAs. It categorises them into classes based on
the certificate:

● Class-1 ​: Any valid certificate
● Class-2 ​: Any valid certificate with an email address

(Currently, Class-3 certificates can only be issued by IUDX CA)

The following sections provide details of the authorization server APIs.

3.2.1 Access Control
Access control list (acl) is a list of data sharing policies for a provider.

3.2.1.1 Create a policy for a provider

Endpoint /auth/v1/acl/set

Called by Data Provider (Class-3)

Method POST

Status Code 200 OK​ - If policy has been set successfully
400 Bad Request​ - If the policy contains syntax errors

API help http://auth.iudx.org.in/acl-set.html

http://auth.iudx.org.in/acl-set.html

Request https://auth.iudx.org.in/auth/v1/acl/set

Header:
content-type: application/json

Body:
{"policy":"barun@iisc.ac.in can access
pune.iudx.org.in/streetlight-1 for 10 days"}

(Multiple rules can be added with ‘;’ e.g
{"policy":"barun@iisc.ac.in can access
pune.iudx.org.in/streetlight-1 for 10 days;* can
access pune.iudx.org.in/aqm for 1 hour"}​)

Response 200 OK
{"success":true}

3.2.1.2 Append to an access control policy for a provider

Endpoint /auth/v1/acl/append

Called by Data Provider (Class-3)

Method POST

Status Code 200 OK​ - If policy has been appended successfully
400 Bad Request​ - If the policy contains syntax errors

API help http://auth.iudx.org.in/acl-append.html

Request https://auth.iudx.org.in/auth/v1/acl/append

Header:
content-type: application/json

Body:
{"policy":"barun@iisc.ac.in can access
pune.iudx.org.in/streetlight-1 for 10 days"}

(Multiple rules can be added with ‘;’ e.g

https://pune.iudx.org.in/
http://auth.iudx.org.in/acl-append.html
https://pune.iudx.org.in/

{"policy":"barun@iisc.ac.in can access
pune.iudx.org.in/streetlight-1 for 10 days;* can
access pune.iudx.org.in/aqm for 1 hour"}​)

Response 200 OK
{"success":true}

3.2.1.3 Revert to previous policy

Endpoint /auth/v1/acl/set

Called by Data Provider (Class-3)

Method POST

Status Code 200 OK​ - If policy has been reverted successfully
400 Bad Request​ - If there are no saved "​previous​" policy

API help http://auth.iudx.org.in/acl-revert.html

Request https://auth.iudx.org.in/auth/v1/acl/revert

Response 200 OK
{"success":true}

3.2.1.4 List all policies of a provider.

Endpoint /auth/v1/acl

Called by Data Provider (Class-3)

Method GET

Status Code 200 OK​ - If policy has been retrieved successfully
400 Bad Request​ - If no policy has been set by provider

API help http://auth.iudx.org.in/acl.html

http://auth.iudx.org.in/acl-revert.html
http://auth.iudx.org.in/acl.html

Request https://auth.iudx.org.in/auth/v1/acl

Response 200 OK
{
 "policy": [<The list of policies>],
 "previous-policy": [<List of policies before most
recent update>],
 "last-updated": <Timestamp when policies were last
updated>,
 "api-called-from": <Site from which policy was
updated>
}

3.2.2 Access Tokens

3.2.2.1 Get an access token

Endpoint /auth/v1/token

Called by Data Consumer (Class-2 and above)

Method POST

Status Code 200 OK​ - If access is allowed, and token issued
400 Forbidden​ - If access to requested resource denied
429 Too Many Requests​ - If client makes too many requests

API help http://auth.iudx.org.in/token.html

Request https://auth.iudx.org.in/auth/v1/token

Header:
content-type: application/json

Body: ​The request body can be structured in two ways

1.Simple

{
"request" : <resource id(s)> // required

http://auth.iudx.org.in/token.html

"token-time": <requested_token_validity> // optional
}

2.Complex

{
 "request" :
 {
 "id" : <resource id> // required
 "apis" : <array of APIs> // optional
 "methods" : <array of methods> // optional
 "body" : <dictionary of body variables to be
called with the API> // optional
 },
 "token-time" : <requested_token_validity> //optional
}

The "​request​" field could also be an "array" of strings/objects.

Response 200 OK

{
 "access_token": <token>,
 "token_type": " IUDX",
 "expires_in": <expiry-time-in-seconds>,
 “server_token” : {<server>:<token>,...}
}

3.2.3 Managing tokens

3.2.3.1 Revoke a valid token

End-Point /auth/v1/token/revoke

Called by Data Providers and Data Consumers (Class-3)

Method POST

Status Code 200 OK​ - If token is successfully revoked
403 Not Found​ - If token is invalid

API help http://auth.iudx.org.in/token-revoke.html

http://auth.iudx.org.in/token-revoke.html

Request https://auth.iudx.org.in/auth/v1/token/revoke

Body:
{"tokens": [<list of-tokens(or token
hashes)-to-be-revoked>]}

Response 200 OK

{"success":true}

3.2.3.2 Revoke all valid tokens of a consumer

End-Point /auth/v1/token/revoke-all

Called by Data Providers and Data Consumers (Class-3)

Method POST

Status Code 200 OK​ - If token is successfully revoked
400 Bad Request​ - If inputs are invalid

API help http://auth.iudx.org.in/token-revoke-all.html

Request https://auth.iudx.org.in/auth/v1/token/revoke-all

Body:
{"serial": "<certificate-serial-of-consumer>",
"fingerprint" :
"<sha1-fingerprint-of-the-certificate>"}

Response 200 OK
{"success":true}

http://auth.iudx.org.in/token-revoke-all.html

3.2.3.3 Introspect a token

End-Point /auth/v1/token/introspect

Called by Resource Server (Class-1)

Method POST

Status Code 200 OK​ - If the token is valid
403 Not Found​ - If the token is invalid/expired OR The "​CN​" of the
resource-server certificate does not match the IP address of the machine
which is calling this API
429 Too Many Requests​ - If the resource-server makes too many
requests

API help http://auth.iudx.org.in/token-introspect.html

Request https://auth.iudx.org.in/auth/v1/token/introspect

Body:
{
"token”: <token presented by the consumer>// required
"server-token": <server token presented by the
consumer> // optional
"request": <the request that was sent by the consumer>
// optional
}

Response 200 OK
{
 "consumer":"<consumer-email>",
 "expiry":"<expiry-timestamp>",
 "request":[
 { "id":"<id>",
 "apis":[<apis>],
 "body":<body>,
 "methods":[<methods>]}
,...],
"consumer-certificate-class":<cert-class-of-consumer>

http://auth.iudx.org.in/token-introspect.html

}

3.2.3.4 Audit tokens

End-Point /auth/v1/audit/tokens

Called by Data Providers and Data Consumers (Class-3)

Method POST

Status Code 200 OK​ - If audit report has been successfully fetched
403 Not Found​ - If the certificate class is < 3

API help http://auth.iudx.org.in/audit-tokens.html

Request https://auth.iudx.org.in/auth/v1/audit/tokens

Body:
{"hours":
<number-of-hours-for-which-audit-report-has-to-be-gene
rated>}

Response 200 OK
{
 "consumer": "<consumer>",
 "token-hash": "<token-hash>",
 "token-issued-at": "<time>",
 "introspected": false,
 "revoked": false,
 "expiry": "<time>",
 "expired": true,
 "certificate-serial-number": "<serial-num>",
 "certificate-fingerprint": "<fingerprint>",
 "request": [<ids, methods, apis requested for this
token>],
 "geoip": {

"ll": [<lat,long>],
"city": "<city>",
"region": "<region like KA>",
"country": "<country like IN>",

http://auth.iudx.org.in/audit-tokens.html

"timezone": "<timezone like Asia/Kolkata>"
 },
 "paid": true,
 "api-called-from": null
}

3.2.4 Managing Groups

3.2.4.1 Add consumer to a group

End-Point /auth/v1/group/add

Called by Data Provider (Class-3)

Method POST

Status Code 200 OK​ - If group is created
400 Bad Request​ - If inputs are invalid

API help http://auth.iudx.org.in/group-add.html

Request https://auth.iudx.org.in/auth/v1/group/add

Body:
{
"consumer": <the name of the consumer>
"group": <the name of the group to which the consumer
has to be added>
"valid-till": <the number of hours for which the group
membership is valid>
}

Response 200 OK
{"success":true}

http://auth.iudx.org.in/group-add.html

3.2.4.2 Delete consumer from a group

End-Point /auth/v1/group/delete

Called by Data Provider (Class-3)

Method POST

Status Code 200 OK ​- If consumer is deleted
400 Bad Request​ - If consumer does not exist in group

API help http://auth.iudx.org.in/group-delete.html

Request https://auth.iudx.org.in/auth/v1/group/delete

Body:
{
"consumer": <the name of the consumer>
"group": <the name of the group from which the
consumer has to be deleted>
}

If ​“consumer”​ is ​*​, then group will be deleted

Response 200 OK
{
 “num-consumers-deleted" : <no.-of-consumers-deleted>
}

3.2.4.3 List consumers in a group.

End-Point /auth/v1/group/list

Called by Data Provider (Class-3)

Method POST

Status Code 200 OK​ - If list of consumers retrieved

http://auth.iudx.org.in/group-delete.html

API help http://auth.iudx.org.in/group-list.html

Request https://auth.iudx.org.in/auth/v1/group/list

Body:
{"group": “<name-of-the-group>”}

Response 200 OK
[
 {"consumer":"<consumer-name>",
“valid-till”:”<till-when-consumer-is-part-of-group>”
}, …]

3.2.5 Miscellaneous

3.2.5.1 Get certificate information

Endpoint auth/v1/certificate-info

Called by Anyone with a valid certificate

Method POST

Status Code 200 OK​ - If request successful
400 Bad Request ​- If access denied

API help http://auth.iudx.org.in/certificate-info.html

Request https://auth.iudx.org.in/auth/v1/certificate-info

Response 200 OK

{
"id": <email-id>,
"certificate-class": <certificate-class>
"serial": <serial>,
"fingerprint": <fingerprint>
}

http://auth.iudx.org.in/group-list.html
http://auth.iudx.org.in/certificate-info.html

3.3 References

[0] ​https://github.com/rbccps-iisc/node-aperture​, forked from
https://github.com/joyent/node-aperture
[1] ​https://www.openbsd.org/faq/pf/
[2] ​https://www.tarsnap.com/
[3] ​https://core.telegram.org/bots
[4] ​https://ca.iudx.org.in/
[5] ​http://cca.gov.in/licensed_ca.html

https://github.com/rbccps-iisc/node-aperture
https://github.com/joyent/node-aperture
https://www.openbsd.org/faq/pf/
https://www.tarsnap.com/
https://core.telegram.org/bots
https://ca.iudx.org.in/
http://cca.gov.in/licensed_ca.html

4 Resource Server and Catalogue API
Specifications

Up

Resource Server API Documentation
The resource server provides data access through search, count, subscription APIs. The APIs for these
functionalities can be constructed using (1) Resource Server ID, (2) Resource Group ID, and (3) Verbs,
Queries and Filters.

Authentication and Authorization for the resource server interface is through the use of IUDX tokens
issued by the IUDX Authorization Server. All the APIs of the resource server interface accept the IUDX
auth token using the “token” header. If a token is not provided then the APIs operate only on publicly
available data sets or service-offerings. However, when a token is supplied, the resource server interface
discerns the scope of the token after contacting the IUDX auth server and performs operations on all
those resources instead of only restricting the operation to public resources.

More information: https://helloreverb.com
Contact Info: hello@helloreverb.com
Version: 1.0.0
All rights reserved
http://apache.org/licenses/LICENSE-2.0.html

Access

Methods

[Jump to Models]

Table of Contents

ComplexSearchAPIs

POST /entities/search

SimpleSearchAPIs

GET /entities

GET /entities/{entityId}

SubscriptionAPIs

POST /subscriptions

DELETE /subscriptions/{subscriptionId}

GET /subscriptions/{subscriptionId}

PATCH /subscriptions/{subscriptionId}

ComplexSearchAPIs

POST /entities/search

(complexSearch)

Obtain results for a complex search.

Consumes
This API call consumes the following media types via the Content-Type request header:

application/json

Request body

body standardQuery (required)

https://helloreverb.com/
file:///home/vasanth/.cache/.fr-yTsiqw/hello@helloreverb.com

Up

Body Parameter —

Return type
standardDataResponse

Example data
Content-Type: application/json

[{

 "id" : "string",

 "type" : "string",

 "location" : {

 "type" : "GeoProperty",

 "value" : { },

 "observedAt" : "2020-06-03T09:37:20.049Z"

 },

 "observationSpace" : {

 "type" : "GeoProperty",

 "value" : { },

 "observedAt" : "2020-06-03T09:37:20.049Z"

 },

 "operationSpace" : {

 "type" : "GeoProperty",

 "value" : { },

 "observedAt" : "2020-06-03T09:37:20.049Z"

 },

 "@context" : "Unknown Type: string,object,array",

 "createdAt" : "2020-06-03T09:37:20.049Z",

 "modifiedAt" : "2020-06-03T09:37:20.049Z"

}]

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
200
Query successful standardDataResponse
400
Bad query. standardBadQueryResponse
404
No query can be performed. standardBadQueryResponse

SimpleSearchAPIs

GET /entities

(search)

Search for data which matches the given query.

Query parameters

id (required)
Query Parameter — ID of the entity

type (optional)
Query Parameter — Comma separated list of Entity type names to be retrieved

idPattern (optional)
Query Parameter — Regular expression that must be matched by Entity ids

attrs (optional)
Query Parameter — Comma separated list of attribute names (properties or relationships) to be retrieved

q (optional)
Query Parameter — Query

geoRel (optional)
Query Parameter — Geo Relationship

geometry (optional)
Query Parameter — Geometry type, for e.g, linestring, bbox, polygon.

coordinates (optional)
Query Parameter — Coordinates for the given geometry. It should be a string encoded multi dimensional
array.

geoproperty (optional)
Query Parameter — The geoproperty on which the geo query is to be performed.

Return type
standardDataResponse

Example data
Content-Type: application/json

[{

 "id" : "string",

 "type" : "string",

 "location" : {

 "type" : "GeoProperty",

 "value" : { },

 "observedAt" : "2020-06-03T09:37:20.049Z"

 },

 "observationSpace" : {

 "type" : "GeoProperty",

 "value" : { },

 "observedAt" : "2020-06-03T09:37:20.049Z"

 },

 "operationSpace" : {

 "type" : "GeoProperty",

 "value" : { },

 "observedAt" : "2020-06-03T09:37:20.049Z"

 },

 "@context" : "Unknown Type: string,object,array",

 "createdAt" : "2020-06-03T09:37:20.049Z",

 "modifiedAt" : "2020-06-03T09:37:20.049Z"

}]

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
200
Query is successful. standardDataResponse
400
Bad query. standardBadQueryResponse

Up
GET /entities/{entityId}

(simpleSearch)

Search for data which matches the given query.

Path parameters

entityId (required)
Path Parameter — Id of the entity.

Query parameters

attrs (optional)
Query Parameter — Comma separated list of attribute names (properties or relationships) to be retrieved

Return type
standardDataResponse

Example data
Content-Type: application/json

[{

 "id" : "string",

 "type" : "string",

 "location" : {

 "type" : "GeoProperty",

 "value" : { },

 "observedAt" : "2020-06-03T09:37:20.049Z"

 },

 "observationSpace" : {

 "type" : "GeoProperty",

 "value" : { },

 "observedAt" : "2020-06-03T09:37:20.049Z"

 },

 "operationSpace" : {

 "type" : "GeoProperty",

 "value" : { },

 "observedAt" : "2020-06-03T09:37:20.049Z"

 },

 "@context" : "Unknown Type: string,object,array",

 "createdAt" : "2020-06-03T09:37:20.049Z",

 "modifiedAt" : "2020-06-03T09:37:20.049Z"

}]

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
200
Query is successful. standardDataResponse
400
Bad query. standardBadQueryResponse
404
No entity with the id is found. standardBadQueryResponse

SubscriptionAPIs

Up

Up

Up

POST /subscriptions

(subscriptionsPost)
Register a subscription.

Consumes
This API call consumes the following media types via the Content-Type request header:

application/json

Request body

body subscriptionDescription (required)
Body Parameter —

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
201
Subscription has been registered.
400
Bad subscription request. standardBadQueryResponse
409
Subscription already exists.

DELETE /subscriptions/{subscriptionId}

(subscriptionsSubscriptionIdDelete)

Delete subscription.

Path parameters

subscriptionId (required)
Path Parameter — Id of the subscription.

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
204
Subscription is deleted.
400
Bad request. standardBadQueryResponse
404
No such subscription found. standardBadQueryResponse

GET /subscriptions/{subscriptionId}

(subscriptionsSubscriptionIdGet)

Subscribe to data from a resource server by matching a query. If subscription exists, it retrieves the subscriptions
available in the system.

Path parameters

subscriptionId (required)
Path Parameter — Id of the subscription.

Return type
subscriptionDescription

Example data
Content-Type: application/json

{

 "id" : "string",

 "name" : "string",

 "description" : "string",

 "watchedAttributes" : ["string"],

 "timeInterval" : 0,

 "geoQ" : {

 "geometry" : "string",

 "coordinates" : [0],

 "georel" : "string"

 },

 "notification" : {

 "attributes" : ["string"],

 "format" : "string",

 "endpoint" : {

 "uri" : "string",

 "accept" : "application/json"

 },

 "timesSent" : 0,

 "lastNotification" : "2020-06-03T09:51:42.022Z",

 "lastFailure" : "2020-06-03T09:51:42.022Z",

 "lastSuccess" : "2020-06-03T09:51:42.022Z"

 },

 "expires" : "2020-06-03T09:51:42.022Z",

 "status" : "active",

 "throttling" : 0,

 "q" : "string",

 "@context" : "Unknown Type: string,object,array",

 "type" : "Subscription",

 "entities" : [{

 "id" : "string",

 "idPattern" : "string",

 "type" : "string"

 }]

}

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
200
List of subscriptions. subscriptionDescription

Up

Up

PATCH /subscriptions/{subscriptionId}

(subscriptionsSubscriptionIdPatch)

Updates a specific Subscription within a system. The additional subscription parameters must include the id.

Path parameters

subscriptionId (required)
Path Parameter — Id of the subscription.

Consumes
This API call consumes the following media types via the Content-Type request header:

application/json

Request body

body subscriptionDescription (required)
Body Parameter —

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
204
Subscription updated successfully.
400
Bad subscription update request. standardBadQueryResponse
404
No subscription exists to update. standardBadQueryResponse

Models

[Jump to Methods]

Table of Contents

1. standardBadQueryResponse - Root Type for standardBadQueryResponse
2. standardDataResponse - Root Type for standardDataResponse
3. standardDataResponse_inner
4. standardQuery - Root Type for standardQuery
5. subscriptionDescription - Root Type for subscriptionDescription
6. subscriptionDescription_entities
7. subscriptionDescription_geoQ
8. subscriptionDescription_notification
9. subscriptionDescription_notification_endpoint

standardBadQueryResponse - Root Type for standardBadQueryResponse

Response for bad queries.

type (optional)
String

title (optional)
String

detail (optional)
String

Up

Up

Up

Up

standardDataResponse - Root Type for standardDataResponse

Standard data response for an entities query

standardDataResponse_inner

id (optional)
String

type (optional)
String

location (optional)
Object

observationSpace (optional)
Object

operationSpace (optional)
Object

@context (optional)
String

createdAt (optional)
Date format: date-time

modifiedAt (optional)
Date format: date-time

standardQuery - Root Type for standardQuery

A standard complex query body.

id (optional)
String

type (optional)
String

idPattern (optional)
String

attrs (optional)
String

q (optional)
String

georel (optional)
String

geometry (optional)
String

coordinates (optional)
String

geoproperty (optional)
String

subscriptionDescription - Root Type for subscriptionDescription

Payload describing information required to register a subscription.

id (optional)

Up

Up

Up

String

name (optional)
String

description (optional)
String

watchedAttributes (optional)
array[String]

timeInterval (optional)
Integer format: int32

geoQ (optional)
subscriptionDescription_geoQ

notification (optional)
subscriptionDescription_notification

expires (optional)
Date format: date-time

status (optional)
String

throttling (optional)
Integer format: int32

q (optional)
String

@context (optional)
String

type (optional)
String

entities (optional)
array[subscriptionDescription_entities]

subscriptionDescription_entities

id (optional)
String

idPattern (optional)
String

type (optional)
String

subscriptionDescription_geoQ

geometry (optional)
String

coordinates (optional)
array[Integer] format: int32

georel (optional)
String

subscriptionDescription_notification

attributes (optional)

Up

array[String]

format (optional)
String

endpoint (optional)
subscriptionDescription_notification_endpoint

timesSent (optional)
Integer format: int32

lastNotification (optional)
Date format: date-time

lastFailure (optional)
Date format: date-time

lastSuccess (optional)
Date format: date-time

subscriptionDescription_notification_endpoint

uri (optional)
String

accept (optional)
String

Up

Catalogue API Documentation
The information resource catalogue contains the meta-data of resources along with auxiliary
descriptions, API endpoints, data models and other meta-information like discovery hints, location
details, providers etc. More details can be found in the IUDX specification

Authentication and Authorization for the catalogue interface is achieved through tokens which is obtained
using the client side certificates, issued by the IUDX Certificate Authority. Apart from search APIs, all the
other APIs requires a token.

The API documentation is written using swagger, where the defenitions, methods, endpoints, query and
path parameters are described.

More information: https://helloreverb.com
Contact Info: hello@helloreverb.com
Version: 1.0.0
All rights reserved
http://apache.org/licenses/LICENSE-2.0.html

Access

Methods

[Jump to Models]

Table of Contents

ConfigurationAPIs

GET /cities

GET /ui/config/

GET /ui/cities

DELETE /ui/config/

POST /ui/config/

PUT /ui/config/

MetaInformationOnboardingAPIs

DELETE /items/{id}

POST /items

SearchAPIs

GET /items/{id}

GET /search

ConfigurationAPIs

GET /cities

(citiesGet)

Request headers

Return type
listOfCities

Example data

token (required)

https://helloreverb.com/
file:///home/vasanth/.cache/.fr-ksvQEU/hello@helloreverb.com

Up

Content-Type: application/json

["id1", "id2"]

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
200
List of cities listOfCities

GET /ui/config/

(getconfig)

Get a UI configuation file for an instance id.

Request headers

Query parameters

instanceid (required)
Query Parameter — Instance id for which config is required.

Return type
citiesResponseBody

Example data
Content-Type: application/json

{

 "status" : "success",

 "results" : [{

 "__instance-id" : "pudx.catalogue.iudx.org.in",

 "configurations" : {

 "smart_city_name" : "PSCDCL",

 "map_default_view_lat_lng" : [18.5644, 73.7858]

 }

 }]

}

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
200
The query yielded results. citiesResponseBody
204
Configuration was not loaded. invalidSearchResponesBody
400
Bad query.

token (required)

Up

Up

Up

GET /ui/cities

(uiCitiesGet)
Get all cities registered to a catalogue.

Request headers

Return type
citiesResponseBody

Example data
Content-Type: application/json

{

 "status" : "success",

 "results" : [{

 "__instance-id" : "pudx.catalogue.iudx.org.in",

 "configurations" : {

 "smart_city_name" : "PSCDCL",

 "map_default_view_lat_lng" : [18.5644, 73.7858]

 }

 }]

}

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
200
The query yielded results. citiesResponseBody
204
No cities were registered. invalidSearchResponesBody
400
Bad query.

DELETE /ui/config/

(uiConfigDelete)

Delete a configuration.

Request headers

Query parameters

instanceid (required)
Query Parameter — Instance id whose config should be deleted.

Responses
204
Config deleted.

POST /ui/config/

token (required)

token (required)

Up

Up

(uiConfigPost)
Insert a configuration for an instance.

Consumes
This API call consumes the following media types via the Content-Type request header:

application/json

Request body

body configBody (required)
Body Parameter —

Request headers

Query parameters

instanceid (required)
Query Parameter — Instance id for which config is to be inserted.

Responses
201
Config created.

PUT /ui/config/

(uiConfigPut)
Update a configuration.

Consumes
This API call consumes the following media types via the Content-Type request header:

application/json

Request body

body configBody (required)
Body Parameter —

Request headers

Query parameters

instanceid (required)
Query Parameter — Instance id for which config needs to be updated.

Responses
201
Successfully updated.
400
Invalid body.

MetaInformationOnboardingAPIs

DELETE /items/{id}

token (required)

Up

(itemsIdDelete)

Delete an item.

Path parameters

id (required)
Path Parameter — id of the item

Request headers

Responses
204
Successfully deleted.
401
Not allowed to delete item.
404
Didn't find the item.

POST /items

(itemsPost)
Insert an item into the catalogue. The item's body specifies the type of item.

Consumes
This API call consumes the following media types via the Content-Type request header:

application/json

Request body

body item (required)
Body Parameter —

Request headers

Return type
item

Example data
Content-Type: application/json

{

 "id" : "hash/group/resourceId"

}

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
201
Successfully inserted. item
400
Schema of item didn't match.
401
Don't have sufficient permission to insert items into the catalogue.

token (required)

Up

Up

SearchAPIs

GET /items/{id}

(getItem)

Get the item.

Path parameters

id (required)
Path Parameter — id of the item

Return type
item

Example data
Content-Type: application/json

{

 "id" : "hash/group/resourceId"

}

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
200
Found the item. item
404
Didn't find the item.

GET /search

(searchGet)
Search items in the catalogue

Query parameters

property (optional)
Query Parameter — Array of properties on which query is to be made. The mapping between a property
and a value is one-to-one.

value (optional)
Query Parameter — Values of the one-to-one mapped properties.

geoproperty (optional)
Query Parameter — Name of the property if the query is on a geospatial property.

georel (optional)
Query Parameter — Type of geoquery, for e.g, within, near, outside.

geometry (optional)
Query Parameter — Geometry of the geo-query, for e.g, linstring, bbox, polygon.

coordinates (optional)
Query Parameter — Coordinates for the specific query type. For e.g, [[1,2], [3,4]]. Note: The data-type of
this field is a string, therefore the coordinates are a string encoded multidimensional array.

Up

q (optional)
Query Parameter — query for text/fuzzy search.

limit (optional)
Query Parameter — Limit number of records in search response.

offset (optional)
Query Parameter — Offset from where the next batch of results should be returned.

Return type
searchResponseBody

Example data
Content-Type: application/json

{

 "status" : "success",

 "totalHits" : 200,

 "limit" : 1,

 "offset" : 100,

 "results" : [{ }]

}

Produces
This API call produces the following media types according to the Accept request header; the media type
will be conveyed by the Content-Type response header.

application/json

Responses
200
All the query parameters yielded results. searchResponseBody
204
None of the query parameters yielded results.
206
Some of the query parameters yielded results. searchResponseBody
400
Bad query.

Models

[Jump to Methods]

Table of Contents

1. citiesResponseBody - Root Type for citiesResponseBody
2. citiesResponseBody_configurations
3. citiesResponseBody_results
4. configBody - Root Type for configBody
5. configBody_configurations
6. configResponse
7. invalidSearchResponesBody - Root Type for invalidSearchResponesBody
8. item - Root Type for itemResponse
9. listOfCities - Root Type for listOfCities

10. searchResponseBody - Root Type for searchResponseBody

citiesResponseBody - Root Type for citiesResponseBody

Response body for a ui/cities query

status (optional)
String

Up

Up

Up

Up

Up

Up

Up

Up

results (optional)
array[citiesResponseBody_results]

citiesResponseBody_configurations

smart_city_name (optional)
String

map_default_view_lat_lng (optional)
array[Double] format: double

citiesResponseBody_results

__instance-id (optional)
String

configurations (optional)
citiesResponseBody_configurations

configBody - Root Type for configBody

Body of the configuration request

instanceId (optional)
String

configurations (optional)
configBody_configurations

configBody_configurations

cat_base_URL (optional)
String

configResponse

Response of the configuration request.

invalidSearchResponesBody - Root Type for invalidSearchResponesBody

Response body for invalid requests.

status (optional)
String

results (optional)
array[null]

item - Root Type for itemResponse

A catalogue item.

id (optional)
String

listOfCities - Root Type for listOfCities

Up

List of cities.

searchResponseBody - Root Type for searchResponseBody

Response body of a search request.

status (optional)
String

totalHits (optional)
Integer format: int32

limit (optional)
Integer format: int32

offset (optional)
Integer format: int32

results (optional)
array[Object]

